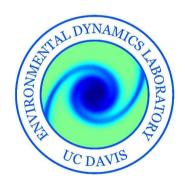
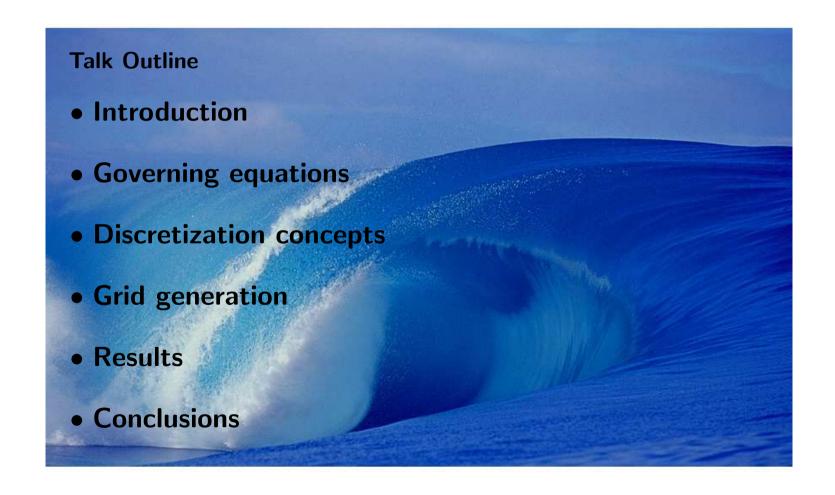
# An Embedded Boundary Adaptive Mesh Refinement Method for Environmental Flows

Mike Barad

Civil and Environmental Engineering University of California, Davis



 $9^{th}$  International Conference on Estuarine and Coastal Modeling (ECM9) Charleston, SC November 1, 2005



#### Introduction

What types of environmental flows do we hope to analyze with this method?

- Highly non-linear, multi-scale flows in oceans, lakes, and rivers
- Flows that are well approximated by the variable density incompressible Navier-Stokes equations
- Examples: internal waves, coastal plumes, density currents in lakes, flows in branched estuarine slough networks, flows past highly complex topography

What are the issues involved?

- Complex and often sparse geometries
- Large ranges in spatial and temporal scales
- Moving fronts and highly complex mixing zones

What do we hope to provide with such a tool?

- An enhanced ability to interpret and extend the results of field and laboratory studies
- A predictive tool for both engineering and science

#### Variable Density Incompressible Navier-Stokes Equations

• Momentum balance

$$\vec{u}_t + (\vec{u} \cdot \nabla)\vec{u} = -\frac{\nabla p}{\rho} + \vec{g} + \nu \Delta \vec{u}$$

• Divergence free constraint

$$\nabla \cdot \vec{u} = 0$$

• Density conservation

$$\rho_t + \vec{u} \cdot \nabla \rho = 0$$

• Passive scalar transport

$$c_t + \vec{u} \cdot \nabla c = \nabla \cdot (k_c \nabla c) + H_c$$

Note that we do not employ Boussinesq or hydrostatic approximations.

#### **Solution Strategy: Temporal Discretization**

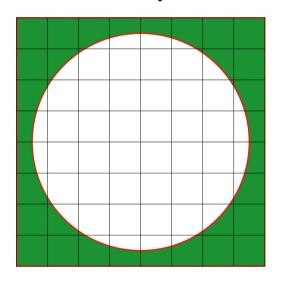
We build on a classic second-order accurate projection method (Bell, Colella, Glaz, JCP 1989). We split the momentum equations into three pieces:

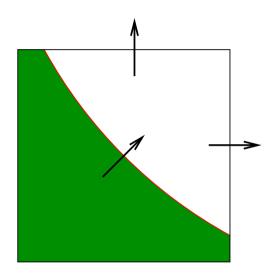
- Hyperbolic:  $\vec{u}_t + (\vec{u} \cdot \nabla)\vec{u} = H$  where we exactly enforce a divergence free state for the advective velocities, and compute the advective term explicitly
- ullet Parabolic:  $ec{u}_t = 
  u \Delta ec{u} + S$  which we solve implicitly for a predictor velocity
- Elliptic:  $\nabla \cdot \frac{1}{\rho} \nabla p = \nabla \cdot (-(\vec{u} \cdot \nabla) \vec{u} + \nu \Delta \vec{u})$  which we solve implicitly for pressure, and subsequently correct the predictor velocity

To update the scalar equations we do similar hyperbolic and parabolic decompositions.

## Solution Strategy: Spatial Discretization Using Embedded Boundaries (EB)

For the bulk of the flow,  $O(n^3)$  cells in 3D, we compute on a regular Cartesian grid. We use an embedded boundary description for the  $O(n^2)$  control-volumes (in 3D) that intersect the boundary.



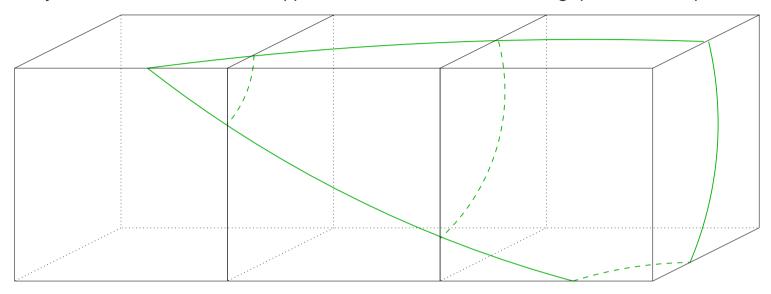


Advantages of underlying rectangular grid:

- Grid generation is tractable, with a straightforward coupling to block-structured adaptive mesh refinement (AMR)
- Good discretization technology, e.g. well-understood consistency theory for finite differences, geometric multigrid for elliptic solvers.

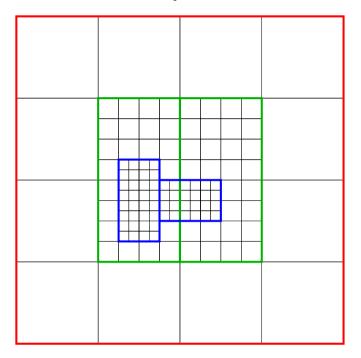
#### **Embedded Boundary Control Volumes**

Three example irregular cells are shown below. Green curves indicate the intersection of the exact boundary with a Cartesian cell. We approximate face intersections using quadratic interpolants.



- For each control volume we compute: volume fractions, area fractions, centroids, boundary areas, and boundary normals. These are all we need for discretizing our conservation laws.
- Unlike typical discretization methods, the EB control volumes naturally fit within easily parallelized disjoint block data structures.
- Efficiently permits dynamic coarsening and refinement of highly complex geometry as a simulation progresses.
- EB's are second-order accurate. Stair-step methods are first-order accurate for area error, and zero-order accurate for perimeter and boundary normal errors.

#### **Block-Structured Adaptive Mesh Refinement**

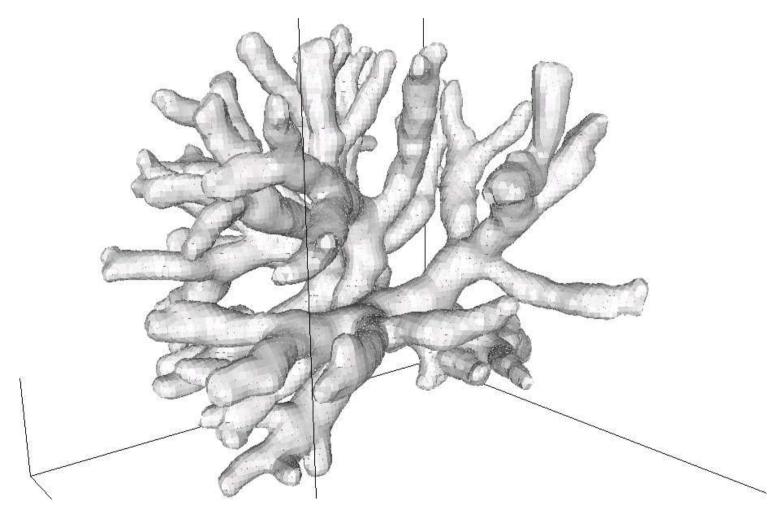


In adaptive methods, one adjusts the computational effort locally to maintain a uniform level of accuracy throughout the problem domain.

- Refined regions are organized into rectangular patches. Refinement is possible in both space and time.
- AMR allows the simulation of a range of spatial and temporal scales. Capturing these ranges is critical to accurately modeling multi-scale transport complexities such as boundaries, fronts, and mixing zones that exist in natural environments.
- Using EB AMR finite-volume methods we maintain conservation and second-order accuracy.

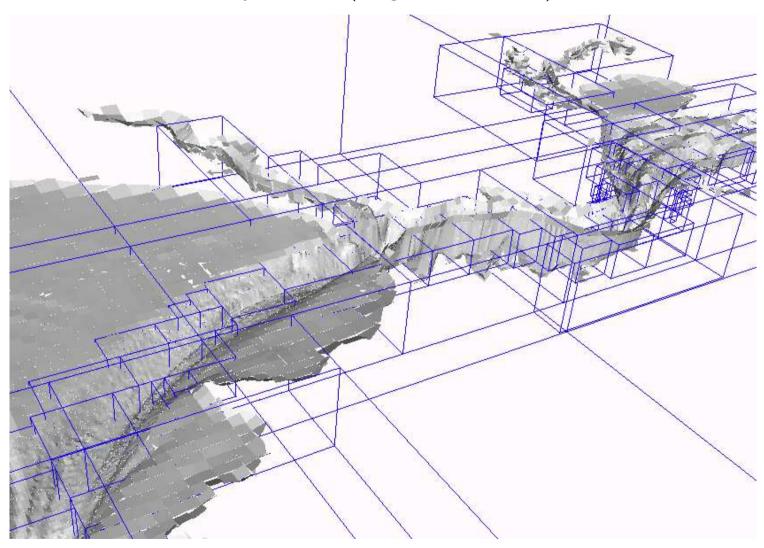
## **EB Grid Generation Examples**

• Madracis Mirabilis Coral (thanks to Dr. Jaap A. Kaandorp for the CT scan data)



## **EB AMR Grid Generation Examples**

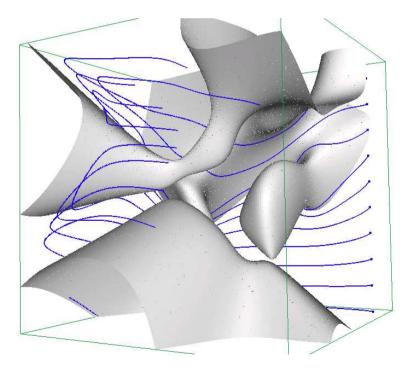
• Northern San Francisco Bay with AMR (using USGS DEM data)



## Results: 3D Convergence Study

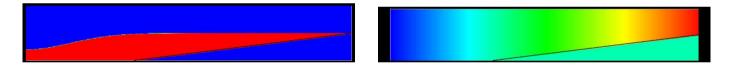
ullet Below is a 3D convergence study for a Re=100, rotational flow past a complex geometry:

| Base Grids                     | 16-32   | Rate | 32-64   |
|--------------------------------|---------|------|---------|
| $L_1$ Norm of U Velocity Error | 1.69e-2 | 2.32 | 3.39e-3 |
| $L_2$ Norm of U Velocity Error | 5.28e-2 | 1.76 | 1.55e-2 |
| $L_1$ Norm of W Velocity Error | 1.48e-2 | 2.29 | 3.03e-3 |
| $L_2$ Norm of W Velocity Error | 4.69e-2 | 1.83 | 1.32e-2 |



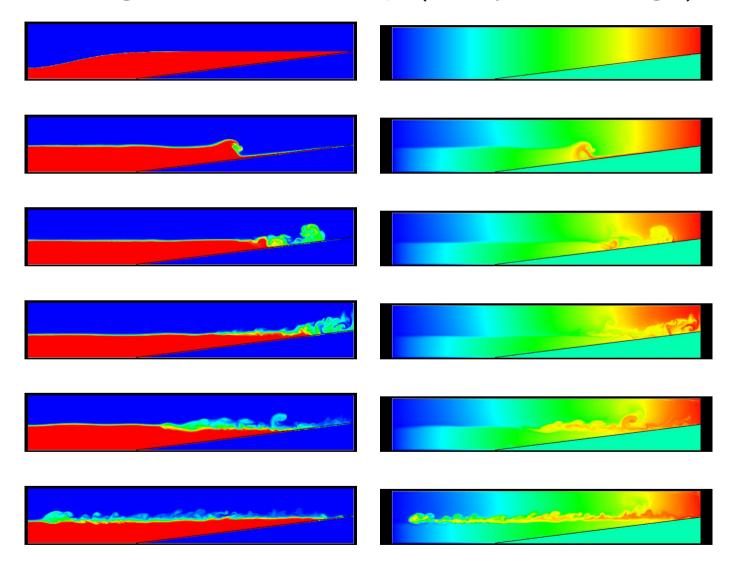
#### Results: Breaking Internal Waves on a Slope

- Flow is inside a 0.5m tall, by 3m wide tank, with an 8:1 slope starting 1m from the left side
- Below left is the initial density distribution (blue is light fluid, red is heavy fluid),
   below right is the initial conditions for a passive scalar

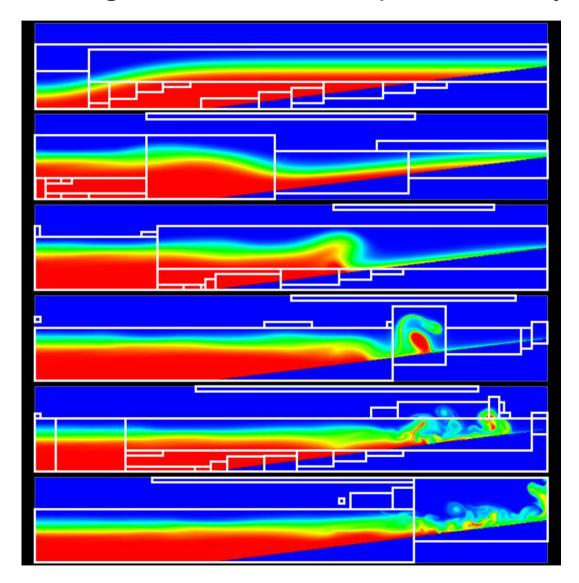


- Density ratio of light fluid to heavy fluid is 1000/1030, and our pycnocline is a step-function. The pycnocline is perturbed on the left side of the tank.
- Thanks to Prof. Fringer of Stanford University for this test problem

## Breaking Internal Wave on a Slope (Density left, Scalar right)

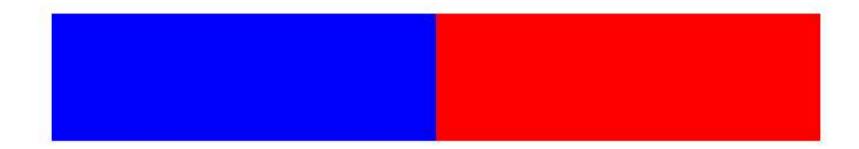


Results: Breaking Internal Waves on a Slope: Smoothed Pycnocline



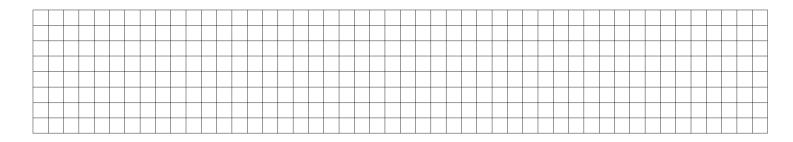
## Results: Lock-Exchange with AMR

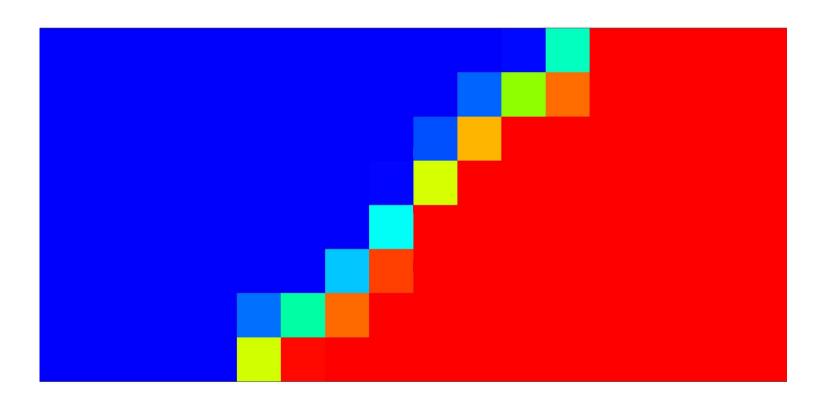
- Flow is inside a 0.5m tall, by 3m wide tank.
- $\bullet$  On the left side of the tank we start with light water, on the right is heavy water. The density ratio of light fluid to heavy fluid is 1000/1030.



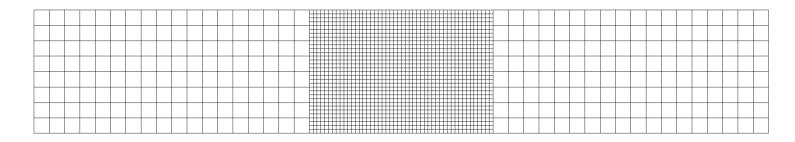
• On the following lock-exchange slides, the lower figure is a zoom in on the center region of the tank.

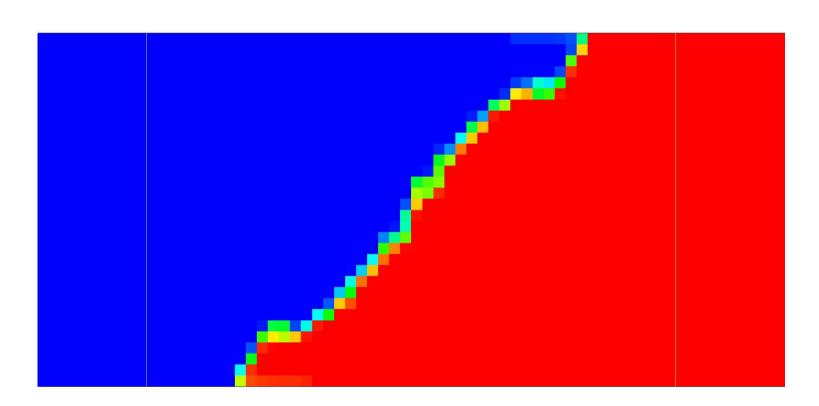
# Lock-Exchange: Why is AMR important?



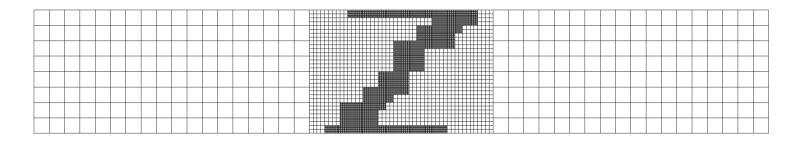


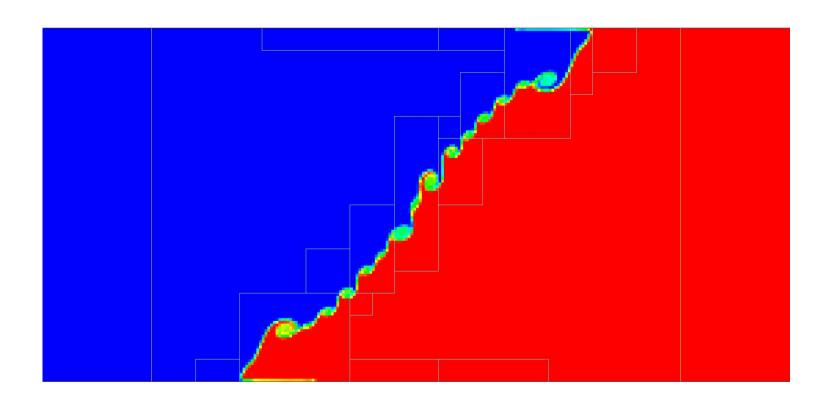
## Lock-Exchange: Why is AMR important?





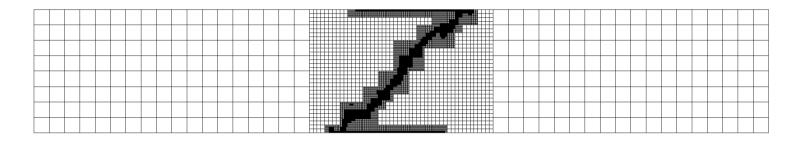
# Lock-Exchange: Why is AMR important?

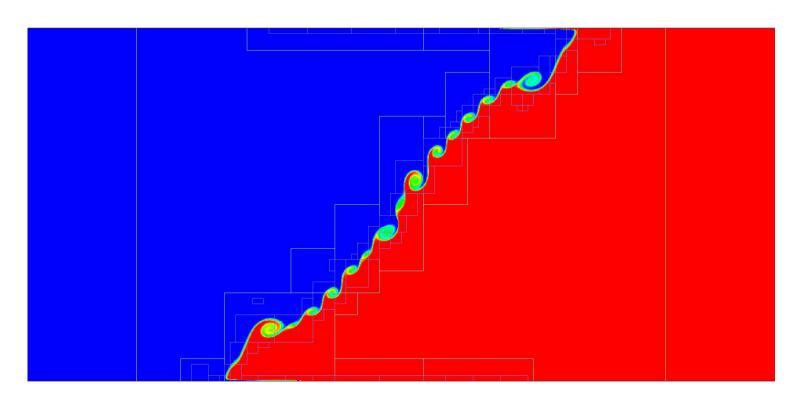




Lock-Exchange: Why is AMR important?

Answer: We can add computational effort only where we need it!





#### **Conclusions and Future Work**

- We now have a second-order accurate incompressible Navier-Stokes code that has been validated in 2D and 3D.
- Our AMR version is showing reasonable results and is under review to ensure second-order accuracy.
- Future Work:
  - Field scale applications
  - Fourth-order accuracy (see my JCP paper with P. Colella).



## **Acknowledgments**

- U.C. Davis: Professor Schladow, my advisor.
- Lawrence Berkeley National Laboratory: This work is conducted as a close collaboration with Phil Colella and his Applied Numerical Algorithms Group (ANAG). Many thanks to the ANAG staff: Phil, D. Graves, T. Ligocki, D. Martin, P. Schwartz, D. Serafini, G. Smith, T. Sternberg, and B. Van Straalen. This research builds on ANAG's Chombo numerical library.
- This research is funded by the Computational Science Graduate Fellowship program of the Department of Energy.
- Check out my web site: http://seesar.lbl.gov/ANAG/staff/barad/